2進数とは、 2 を
基数として表現した数値です。
私たちが普段使用しているのは10進数です。
0 〜 9 の10種類の数字を使って数値を表します。
10進数
(10進記数法: decimal system) で
238 と書けば、「二百三十八」の意味です。
10進数の各桁にそれぞれ10
2、10
1、10
0
の重みがあるからです。
2×102 + 3×101 + 8×100
= 2×100 + 3×10 + 8×1 = 238
ということになります。
10進数の場合、 1桁左に書かれた数字は、 1桁右の数字よりも10倍の重みを持っています。
この数字
(この場合は10) を、
基数 (radix) といいます。
10進数の基数は
10 です。
コンピュータでは2進数が使われています。
0 と 1 の、 2種類の数字だけで数値を表します。
2進数
(2進記数法: binary system) の各桁にもそれぞれ重みがあり、
1桁左に書かれた数字は、 1桁右の数字よりも 2倍の重みを持っています。
2進数の基数は
2 です。
2進数で
1101 と書けば、
1×23 + 1×22 + 0×21 + 1×20
= 1×8 + 1×4 + 0×2 + 1×1 = 13
(10進数)
ということです。
この図の電球や2進数の数字をクリックすると、点・滅、0・1
の状態を変えることができます。
2進数は 0 と 1 の 2 種類の数字を使うので、 たとえば電球が点灯していれば
1、 点灯していなければ
0
と決めておけば、何個かの電球を並べておいて点滅させることで、
2進数の数値を表すことができます。
電子回路でも、電圧が高ければ
1、 低ければ
0
などと決めておけば、 いくつかの信号を組み合わせて数値を表現することができます。
2進数は、 コンピュータで数値を扱うのに最適です。